Highlights
- •Segmentectomy and SBRT are increasingly used for the treatment of nonsolid nodules.
- •It is often difficult to correctly assess the limits and the size of nonsolid nodules.
- •CT did not underestimate the macroscopic size and microscopic extension of the NSN.
Abstract
Introduction
The objective of this study was to determine whether computed tomography (CT) could
be a useful tool for nonsolid lung nodule (NSN) treatment planning, surgery or stereotactic
body radiation therapy (SBRT), by assessing the macroscopic and microscopic extension
of these nodules.
Methods
The study prospectively included 23 patients undergoing anatomic resection at the
Foch Hospital in 2020/2021 for NSN with a ground-glass component of more than 50%.
Firstly, for each patient, both the macroscopic dimensions of the NSN were assessed
on CT and during pathologic analysis. Secondly, the microscopic extension was assessed
during pathologic examination. Wilcoxon sign rank tests were used to compare these
dimensions. Spearman correlation test and Bland-Altman analysis were used to evaluate
the agreement between radiological and pathologic measurements.
Results
On CT, the median largest diameter and volume of NSN were 21 mm and 3780 cc, while
on pathologic analysis, they were 15 mm and 1800 cc, respectively. Therefore, the
largest diameter and volume of the NSN were significantly higher on CT than on pathological
analysis. For microscopic extension, the median largest diameter and volume of NSN
were 17 mm and 2040 cc, respectively. No significant difference was observed between
the macroscopic size and the microscopic extension assessed during pathologic analysis.
Moreover, correlation analysis and Bland-Altman plots showed that radiological and
pathologic measurements could provide equivalent precision.
Conclusion
Our study showed that CT did not underestimate the macroscopic size and microscopic
extension of NSN and confirmed that CT can be used for NSN treatment planning.
Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Clinical Lung CancerAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA: Cancer J Clin. n/a(n/a. 2022; https://doi.org/10.3322/caac.21660
- CT Screening for lung cancer: frequency and significance of part-solid and nonsolid nodules.Am J Roentgenol. 2002; 178: 1053-1057https://doi.org/10.2214/ajr.178.5.1781053
- Recommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner Society.Radiology. 2013; 266: 304-317https://doi.org/10.1148/radiol.12120628
- Ground-glass opacity lung nodules in the era of lung cancer ct screening: radiology, pathology, and clinical management.Oncology (Williston Park, NY). 2016; 30: 266-274
- Guidelines for management of incidental pulmonary nodules detected on CT images: from the fleischner society 2017.Radiology. 2017; 284: 228-243https://doi.org/10.1148/radiol.2017161659
- The American Association for Thoracic Surgery guidelines for lung cancer screening using low-dose computed tomography scans for lung cancer survivors and other high-risk groups.J Thorac Cardiovasc Surg. 2012; 144: 33-38https://doi.org/10.1016/j.jtcvs.2012.05.060
- Identification of preoperative prediction factors of tumor subtypes for patients with solitary ground-glass opacity pulmonary nodules.J Cardiothorac Surg. 2018; 13: 9https://doi.org/10.1186/s13019-018-0696-7
- Distinct clinicopathologic characteristics and prognosis based on the presence of ground glass opacity component in clinical stage IA lung adenocarcinoma.J Thorac Oncol. 2019; 14: 265-275https://doi.org/10.1016/j.jtho.2018.09.026
- Influence of ground glass opacity and the corresponding pathological findings on survival in patients with clinical stage I non-small cell lung cancer.J Thorac Oncol. 2018; 13: 533-542https://doi.org/10.1016/j.jtho.2017.11.129
- Radiologic-pathologic correlation of solid portions on thin-section CT images in lung adenocarcinoma: a multicenter study.Clin Lung Cancer. 2018; 19: e303-e312https://doi.org/10.1016/j.cllc.2017.12.005
- CT Screening for lung cancer: nonsolid nodules in baseline and annual repeat rounds.Radiology. 2015; 277: 555-564https://doi.org/10.1148/radiol.2015142554
- Outcomes of lung cancers manifesting as nonsolid nodules.Lung Cancer. 2016; 97: 35-42https://doi.org/10.1016/j.lungcan.2016.04.005
Henschke CI. International early lung cancer action program: screening protocol. Published 2022. https://www.ielcap.org/sites/default/files/I-ELCAP-protocol.pdf
- International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma.J Thorac Oncol. 2011; 6: 244-285https://doi.org/10.1097/JTO.0b013e318206a221
- Statistical methods for assessing agreement between two methods of clinical measurement.Lancet. 1986; 1: 307-310
- How to use difference plots in quantitative method comparison studies.Ann Clin Biochem. 2006; 43 (Pt): 124-129https://doi.org/10.1258/000456306776021616
- Internal growth of nonsolid lung nodules: radiologic-pathologic correlation.Radiology. 2012; 263: 279-286https://doi.org/10.1148/radiol.11101372
- A prospective radiological study of thin-section computed tomography to predict pathological noninvasiveness in peripheral clinical IA lung cancer (Japan Clinical Oncology Group 0201).J Thorac Oncol. 2011; 6: 751-756https://doi.org/10.1097/JTO.0b013e31821038ab
- Limited resection for early-stage non-small cell lung cancer as function-preserving radical surgery: a review.Japan J Clin Oncol. 2017; 47: 7-11https://doi.org/10.1093/jjco/hyw148
- Surgical extent for ground glass nodules.J Chest Surg. 2021; 54: 338-341https://doi.org/10.5090/jcs.21.029
- A single-arm study of sublobar resection for ground-glass opacity dominant peripheral lung cancer.J Thorac Cardiovasc Surg. 2022; 163 (e2): 289-301https://doi.org/10.1016/j.jtcvs.2020.09.146
- Pulmonary intersegmental planes: imaging appearance and possible reasons leading to their visualization.Radiology. 2013; 267: 267-275https://doi.org/10.1148/radiol.12121114
- The role of three-dimensional reconstructions in understanding the intersegmental plane: an anatomical study of segment 6.Eur J Cardiothorac Surg. 2020; 58: 763-767https://doi.org/10.1093/ejcts/ezaa123
- Optimal distance of malignant negative margin in excision of nonsmall cell lung cancer: a multicenter prospective study.Ann Thorac Surg. 2004; 77: 415-420https://doi.org/10.1016/S0003-4975(03)01511-X
- Outcome in a prospective phase II trial of medically inoperable stage I non-small-cell lung cancer patients treated with stereotactic body radiotherapy.J Clin Oncol. 2009; 27: 3290-3296https://doi.org/10.1200/JCO.2008.21.5681
- Long-term results of a prospective phase II trial of medically inoperable stage I NSCLC treated with SBRT - the Nordic experience.Acta Oncol. 2015; 54: 1096-1104https://doi.org/10.3109/0284186X.2015.1020966
- Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical practice guidelines for diagnosis, treatment and follow-up.Ann Oncol. 2017; 28: iv1-iv21https://doi.org/10.1093/annonc/mdx222
- Stereotactic body radiotherapy in patients with lung tumors composed of mainly ground-glass opacity.J Radiat Res. 2020; 61: 426-430https://doi.org/10.1093/jrr/rraa015
- CT Findings and treatment outcomes of ground-glass opacity predominant lung cancer after stereotactic body radiotherapy.Clin Lung Cancer. 2022; 23: 428-437https://doi.org/10.1016/j.cllc.2022.03.007
- Evaluation of microscopic tumor extension in non–small-cell lung cancer for three-dimensional conformal radiotherapy planning.Int J Radiat Oncol*Biol*Phys. 2000; 48: 1015-1024https://doi.org/10.1016/S0360-3016(00)00750-1
- Stereotactic ablative radiotherapy vs. standard radiotherapy in stage 1 non-small-cell lung cancer (TROG 09.02 CHISEL): a phase 3, open-label, randomized controlled trial.Lancet Oncol. 2019; 20: 494-503https://doi.org/10.1016/S1470-2045(18)30896-9
- Subsolid lung nodule classification: A CT criterion for improving interobserver agreement.Radiology. 2018; 286: 316-325https://doi.org/10.1148/radiol.2017170044
- Management of the peripheral small ground-glass opacities.Thorac Surg Clin. 2007; 17 (viii): 191-201https://doi.org/10.1016/j.thorsurg.2007.03.010
- Atypical adenomatous hyperplasia of the lung and its differentiation from adenocarcinoma. Characterization of atypical cells by morphometry and multivariate cluster analysis.Cancer. 1993; 72: 2331-2340https://doi.org/10.1002/1097-0142(19931015)72:8<2331::aid-cncr2820720808>3.0.co;2-e
Article info
Publication history
Published online: November 08, 2022
Accepted:
November 2,
2022
Received in revised form:
November 1,
2022
Received:
July 14,
2022
Identification
Copyright
© 2022 Elsevier Inc. All rights reserved.